363 research outputs found

    Massive black holes lurking in Milky Way satellites

    Full text link
    As massive black holes (MBHs) grow from lower-mass seeds, it is natural to expect that a leftover population of progenitor MBHs should also exist in the present Universe. Dwarf galaxies undergo a quiet merger history, and as a result, we expect that dwarfs observed in the local Universe retain some ‘memory’ of the original seed mass distribution. Consequently, the properties of MBHs in nearby dwarf galaxies may provide clean indicators of the efficiency of MBH formation. In order to examine the properties of MBHs in dwarf galaxies, we evolve different MBH populations within a Milky Way halo from high redshift to today. We consider two plausible MBH formation mechanisms: ‘massive seeds’ formed via gas-dynamical instabilities and a Population III remnant seed model. ‘Massive seeds’ have larger masses than Population III remnants, but form in rarer hosts. We dynamically evolve all haloes merging with the central system, taking into consideration how the interaction modifies the satellites, stripping their outer mass layers. We compare the population of satellites to the results of N -body simulations and to the observed population of dwarf galaxies. We find good agreement for the velocity, radius and luminosity distributions. We compute different properties of the MBH population hosted in these satellites. We find that some MBHs have been completely stripped of their surrounding dark matter halo, leaving them ‘naked.’ We find that for the most part MBHs retain the original mass, thus providing a clear indication of what the properties of the seeds were. We derive the black hole occupation fraction (BHOF) of the satellite population at z = 0 . MBHs generated as ‘massive seeds’ have large masses that would favour their identification, but their typical BHOF is always below 40 per cent and decreases to ≲1 per cent for observed dwarf galaxy sizes. In contrast, Population III remnants have a higher BHOF, but their masses have not grown much since formation, inhibiting their detection.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79188/1/j.1365-2966.2010.17189.x.pd

    Toward the manipulation of time and space in extended reality: a preliminary study on multimodal Tau and Kappa illusions in the visual-tactile domain

    Get PDF
    In the last few years, Extended reality (XR) has enabled novel forms of sensory experiences and social interplay, which can be hardly experienced in real life. However, the full potential of XR has not been exploited yet, since vision remains the main interaction modality, and the time-and space-modulation of the sense of self-which could open interesting perspectives in several scenarios-is still largely unexplored. To pave the path to a multi-modal manipulation of the sense of time and space in immersive XR, in this work we discuss the preliminary outcomes of the first investigation in the visual-tactile domain of two well known perceptual illusions affecting spatial and temporal perception, i.e. Tau and Kappa effects, respectively. We compared the effects originated from unimodal stimulation (i.e., only visual or tactile) with the same effects induced by convergent bimodal stimulation (i.e., visual and tactile), delivered to the forearm. Results show that both Tau and Kappa effects are affected by the multi-modality of the stimulation, and that the perceptual bias differently affects time-or space-perception based on the modality used for stimulus delivery. Our results, although preliminary, seem to suggest that multimodal perceptual illusions could be a viable solution for time-and space-modulation of the sense of self in immersive XR and advanced social human-robot interaction

    Altering Time Perception in Virtual Reality through Multimodal Visual-tactile Kappa Effect

    Get PDF
    The perception of time is highly subjective and intertwined with space perception. In a well-known perceptual illusion, called Kappa effect, the distance between consecutive stimuli is modified to induce time distortions in the perceived inter-stimulus interval that are proportional to the distance between the stimuli. However, to the best of our knowledge, this effect has not been characterized and exploited in virtual reality (VR) within a multisensory elicitation framework. This paper investigates the Kappa effect elicited by concurrent visual-tactile stimuli delivered to the forearm, through a multimodal VR interface. This paper compares the outcomes of an experiment in VR with the results of the same experiment performed in the “physical world”, where a multimodal interface was applied to participants' forearm to deliver controlled visual-tactile stimuli. Our results suggest that a multimodal Kappa effect can be elicited both in VR and in the physical world relying on concurrent visual-tactile stimulation. Moreover, our results confirm the existence of a relation between the ability of participants in discriminating the duration of time intervals and the magnitude of the experienced Kappa effect. These outcomes can be exploited to modulate the subjective perception of time in VR, paving the path toward more personalised human-computer interaction

    Distortions of Subjective Time Perception Within and Across Senses

    Get PDF
    Background: The ability to estimate the passage of time is of fundamental importance for perceptual and cognitive processes. One experience of time is the perception of duration, which is not isomorphic to physical duration and can be distorted by a number of factors. Yet, the critical features generating these perceptual shifts in subjective duration are not understood. Methodology/Findings: We used prospective duration judgments within and across sensory modalities to examine the effect of stimulus predictability and feature change on the perception of duration. First, we found robust distortions of perceived duration in auditory, visual and auditory-visual presentations despite the predictability of the feature changes in the stimuli. For example, a looming disc embedded in a series of steady discs led to time dilation, whereas a steady disc embedded in a series of looming discs led to time compression. Second, we addressed whether visual (auditory) inputs could alter the perception of duration of auditory (visual) inputs. When participants were presented with incongruent audio-visual stimuli, the perceived duration of auditory events could be shortened or lengthened by the presence of conflicting visual information; however, the perceived duration of visual events was seldom distorted by the presence of auditory information and was never perceived shorter than their actual durations. Conclusions/Significance: These results support the existence of multisensory interactions in the perception of duration and, importantly, suggest that vision can modify auditory temporal perception in a pure timing task. Insofar as distortions in subjective duration can neither be accounted for by the unpredictability of an auditory, visual or auditory-visual event, we propose that it is the intrinsic features of the stimulus that critically affect subjective time distortions

    Recognizing Speech in a Novel Accent: The Motor Theory of Speech Perception Reframed

    Get PDF
    The motor theory of speech perception holds that we perceive the speech of another in terms of a motor representation of that speech. However, when we have learned to recognize a foreign accent, it seems plausible that recognition of a word rarely involves reconstruction of the speech gestures of the speaker rather than the listener. To better assess the motor theory and this observation, we proceed in three stages. Part 1 places the motor theory of speech perception in a larger framework based on our earlier models of the adaptive formation of mirror neurons for grasping, and for viewing extensions of that mirror system as part of a larger system for neuro-linguistic processing, augmented by the present consideration of recognizing speech in a novel accent. Part 2 then offers a novel computational model of how a listener comes to understand the speech of someone speaking the listener's native language with a foreign accent. The core tenet of the model is that the listener uses hypotheses about the word the speaker is currently uttering to update probabilities linking the sound produced by the speaker to phonemes in the native language repertoire of the listener. This, on average, improves the recognition of later words. This model is neutral regarding the nature of the representations it uses (motor vs. auditory). It serve as a reference point for the discussion in Part 3, which proposes a dual-stream neuro-linguistic architecture to revisits claims for and against the motor theory of speech perception and the relevance of mirror neurons, and extracts some implications for the reframing of the motor theory

    An XMM-Newton search for X-ray sources in the Fornax dwarf galaxy

    Full text link
    We report the results of a deep archive XMM-Newton observation of the Fornax spheroidal galaxy that we analyzed with the aim of fully characterizing the X-ray source population (in most of the cases likely to be background active galactic nuclei) detected towards the target. A cross correlation with the available databases allowed us to find a source that may be associated with a variable star belonging to the galaxy. We also searched for X-ray sources in the vicinity of the Fornax globular clusters GC 3 and GC 4 and found two sources probably associated with the respective clusters. The deep X-ray observation was also suitable for the search of the intermediate-mass black hole (of mass ≃104\simeq 10^{4} M⊙_{\odot}) expected to be hosted in the center of the galaxy. In the case of Fornax, this search is extremely difficult since the galaxy centroid of gravity is poorly constrained because of the large asymmetry observed in the optical surface brightness. Since we cannot firmly establish the existence of an X-ray counterpart of the putative black hole, we put constraints only on the accretion parameters. In particular, we found that the corresponding upper limit on the accretion efficiency, with respect to the Eddington luminosity, is as low as a few 10−510^{-5}.Comment: In press on Astronomy and Astrophysics. 12 Pages, colour figures on the on-line version of the pape

    Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks

    Get PDF
    Recurrent neural networks (RNNs) are widely used in computational neuroscience and machine learning applications. In an RNN, each neuron computes its output as a nonlinear function of its integrated input. While the importance of RNNs, especially as models of brain processing, is undisputed, it is also widely acknowledged that the computations in standard RNN models may be an over-simplification of what real neuronal networks compute. Here, we suggest that the RNN approach may be made both neurobiologically more plausible and computationally more powerful by its fusion with Bayesian inference techniques for nonlinear dynamical systems. In this scheme, we use an RNN as a generative model of dynamic input caused by the environment, e.g. of speech or kinematics. Given this generative RNN model, we derive Bayesian update equations that can decode its output. Critically, these updates define a 'recognizing RNN' (rRNN), in which neurons compute and exchange prediction and prediction error messages. The rRNN has several desirable features that a conventional RNN does not have, for example, fast decoding of dynamic stimuli and robustness to initial conditions and noise. Furthermore, it implements a predictive coding scheme for dynamic inputs. We suggest that the Bayesian inversion of recurrent neural networks may be useful both as a model of brain function and as a machine learning tool. We illustrate the use of the rRNN by an application to the online decoding (i.e. recognition) of human kinematics

    A population of luminous accreting black holes with hidden mergers

    Full text link
    Major galaxy mergers are thought to play an important part in fuelling the growth of supermassive black holes. However, observational support for this hypothesis is mixed, with some studies showing a correlation between merging galaxies and luminous quasars and others showing no such association. Recent observations have shown that a black hole is likely to become heavily obscured behind merger-driven gas and dust, even in the early stages of the merger, when the galaxies are well separated (5 to 40 kiloparsecs). Merger simulations further suggest that such obscuration and black-hole accretion peaks in the final merger stage, when the two galactic nuclei are closely separated (less than 3 kiloparsecs). Resolving this final stage requires a combination of high-spatial-resolution infrared imaging and high-sensitivity hard-X-ray observations to detect highly obscured sources. However, large numbers of obscured luminous accreting supermassive black holes have been recently detected nearby (distances below 250 megaparsecs) in X-ray observations. Here we report high-resolution infrared observations of hard-X-ray-selected black holes and the discovery of obscured nuclear mergers, the parent populations of supermassive-black-hole mergers. We find that obscured luminous black holes (bolometric luminosity higher than 2x10^44 ergs per second) show a significant (P<0.001) excess of late-stage nuclear mergers (17.6 per cent) compared to a sample of inactive galaxies with matching stellar masses and star formation rates (1.1 per cent), in agreement with theoretical predictions. Using hydrodynamic simulations, we confirm that the excess of nuclear mergers is indeed strongest for gas-rich major-merger hosts of obscured luminous black holes in this final stage.Comment: To appear in the 8 November 2018 issue of Nature. This is the authors' version of the wor
    • …
    corecore